EconPapers    
Economics at your fingertips  
 

Split Bregman method for large scale fused Lasso

Gui-Bo Ye and Xiaohui Xie

Computational Statistics & Data Analysis, 2011, vol. 55, issue 4, 1552-1569

Abstract: Ordering of regression or classification coefficients occurs in many real-world applications. Fused Lasso exploits this ordering by explicitly regularizing the differences between neighboring coefficients through an l1 norm regularizer. However, due to nonseparability and nonsmoothness of the regularization term, solving the fused Lasso problem is computationally demanding. Existing solvers can only deal with problems of small or medium size, or a special case of the fused Lasso problem in which the predictor matrix is the identity matrix. In this paper, we propose an iterative algorithm based on the split Bregman method to solve a class of large-scale fused Lasso problems, including a generalized fused Lasso and a fused Lasso support vector classifier. We derive our algorithm using an augmented Lagrangian method and prove its convergence properties. The performance of our method is tested on both artificial data and real-world applications including proteomic data from mass spectrometry and genomic data from array comparative genomic hybridization (array CGH). We demonstrate that our method is many times faster than the existing solvers, and show that it is especially efficient for large p, small n problems, where p is the number of variables and n is the number of samples.

Keywords: Fused; Lasso; Bregman; iteration; l1-norm; Fused; Lasso; support; vector; classifier (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00409-3
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:4:p:1552-1569

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1552-1569