Approximate predictive densities and their applications in generalized linear models
Min Chen and
Xinlei Wang
Computational Statistics & Data Analysis, 2011, vol. 55, issue 4, 1570-1580
Abstract:
Exact calculations of model posterior probabilities or related quantities are often infeasible due to the analytical intractability of predictive densities. Here new approximations for obtaining predictive densities are proposed and contrasted with those based on the Laplace method. Our theory and a numerical study indicate that the proposed methods are easy to implement, computationally efficient, and accurate over a wide range of hyperparameters. In the context of GLMs, we show that they can be employed to facilitate the posterior computation under three general classes of informative priors on regression coefficients. A real example is provided to demonstrate the feasibility and usefulness of the proposed methods in a fully Bayes variable selection procedure.
Keywords: Laplace; approximation; GLM; Normal; prior; Power; prior; Conjugate; prior; Asymptotic; normality; Logistic; regression (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00433-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:4:p:1570-1580
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().