Approximate Bayesian inference in spatial GLMM with skew normal latent variables
Fatemeh Hosseini,
Jo Eidsvik and
Mohsen Mohammadzadeh
Computational Statistics & Data Analysis, 2011, vol. 55, issue 4, 1791-1806
Abstract:
Spatial generalized linear mixed models are common in applied statistics. Most users are satisfied using a Gaussian distribution for the spatial latent variables in this model, but it is unclear whether the Gaussian assumption holds. Wrong Gaussian assumptions cause bias in the parameter estimates and affect the accuracy of spatial predictions. Thus, there is a need for more flexible priors for the latent variables, and to perform efficient inference and spatial prediction in the resulting models. In this paper we use a skew normal prior distribution for the spatial latent variables. We propose new approximate Bayesian methods for the inference and spatial prediction in this model. A key ingredient in our approximations is using the closed skew normal distribution to approximate the full conditional for the latent variables. Our approximate inference and spatial prediction methods are fast and deterministic, using no sampling based strategies. The results indicate that the skew normal prior model can give better predictions than the normal model, while avoiding overfitting.
Keywords: Approximate; Bayesian; inference; Closed; skew; normal; distribution; Geostatistics; Latent; variables; MCMC; Skew; normal; distribution; Spatial; generalized; linear; mixed; model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00439-1
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:4:p:1791-1806
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().