An experimental comparison of cross-validation techniques for estimating the area under the ROC curve
Antti Airola,
Tapio Pahikkala,
Willem Waegeman,
Bernard De Baets and
Tapio Salakoski
Computational Statistics & Data Analysis, 2011, vol. 55, issue 4, 1828-1844
Abstract:
Reliable estimation of the classification performance of inferred predictive models is difficult when working with small data sets. Cross-validation is in this case a typical strategy for estimating the performance. However, many standard approaches to cross-validation suffer from extensive bias or variance when the area under the ROC curve (AUC) is used as the performance measure. This issue is explored through an extensive simulation study. Leave-pair-out cross-validation is proposed for conditional AUC-estimation, as it is almost unbiased, and its deviation variance is as low as that of the best alternative approaches. When using regularized least-squares based learners, efficient algorithms exist for calculating the leave-pair-out cross-validation estimate.
Keywords: Area; under; the; ROC; curve; Classifier; performance; estimation; Conditional; AUC; estimation; Cross-validation; Leave-pair-out; cross-validation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00446-9
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:4:p:1828-1844
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().