Robust diagnostics for the heteroscedastic regression model
Tsung-Chi Cheng
Computational Statistics & Data Analysis, 2011, vol. 55, issue 4, 1845-1866
Abstract:
The assumption of equal variance in the normal regression model is not always appropriate. Cook and Weisberg (1983) provide a score test to detect heteroscedasticity, while Patterson and Thompson (1971) propose the residual maximum likelihood (REML) estimation to estimate variance components in the context of an unbalanced incomplete-block design. REML is often preferred to the maximum likelihood estimation as a method of estimating covariance parameters in a linear model. However, outliers may have some effect on the estimate of the variance function. This paper incorporates the maximum trimming likelihood estimation ([Hadi and Luceño, 1997] and [Vandev and Neykov, 1998]) in REML to obtain a robust estimation of modelling variance heterogeneity. Both the forward search algorithm of Atkinson (1994) and the fast algorithm of Neykov et al. (2007) are employed to find the resulting estimator. Simulation and real data examples are used to illustrate the performance of the proposed approach.
Keywords: Forward; search; algorithm; Heteroscedasticity; Maximum; trimmed; likelihood; estimator; Residual; maximum; likelihood; estimator; Outlier; Robust; diagnostics (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00452-4
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:4:p:1845-1866
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().