A comparative study of nonparametric estimation in Weibull regression: A penalized likelihood approach
Young-Ju Kim
Computational Statistics & Data Analysis, 2011, vol. 55, issue 4, 1884-1896
Abstract:
The Weibull distribution is popularly used to model lifetime distributions in many areas of applied statistics. This paper employs a penalized likelihood method to estimate the shape parameter and an unknown regression function simultaneously in a nonparametric Weibull regression. Four methods were considered: two cross-validation methods, a corrected Akaike information criterion, and a Bayesian information criterion. Each method was evaluated based on shape parameter estimation as well as selecting the smoothing parameter in a penalized likelihood model through a simulation study. Adapting a lower-dimensional approximation and deriving confidence intervals from Bayes models of the penalized likelihood, the comparative performances of methods using both censored and uncensored data were examined for various censoring rates. The methods are applied to a real data example of lung cancer.
Keywords: Nonparametric; regression; Penalized; likelihood; Shape; parameter; Smoothing; parameter; Weibull; distribution (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00417-2
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:4:p:1884-1896
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().