EconPapers    
Economics at your fingertips  
 

Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix

Thomas J. Fisher and Xiaoqian Sun

Computational Statistics & Data Analysis, 2011, vol. 55, issue 5, 1909-1918

Abstract: Many applications require an estimate for the covariance matrix that is non-singular and well-conditioned. As the dimensionality increases, the sample covariance matrix becomes ill-conditioned or even singular. A common approach to estimating the covariance matrix when the dimensionality is large is that of Stein-type shrinkage estimation. A convex combination of the sample covariance matrix and a well-conditioned target matrix is used to estimate the covariance matrix. Recent work in the literature has shown that an optimal combination exists under mean-squared loss, however it must be estimated from the data. In this paper, we introduce a new set of estimators for the optimal convex combination for three commonly used target matrices. A simulation study shows an improvement over those in the literature in cases of extreme high-dimensionality of the data. A data analysis shows the estimators are effective in a discriminant and classification analysis.

Keywords: Covariance; matrix; Shrinkage; estimation; High-dimensional; data; analysis (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00474-3
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:5:p:1909-1918

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1909-1918