Conditional copulas, association measures and their applications
Irène Gijbels,
Noël Veraverbeke and
Marel Omelka
Computational Statistics & Data Analysis, 2011, vol. 55, issue 5, 1919-1932
Abstract:
One way to model a dependence structure is through the copula function which is a mean to capture the dependence structure in the joint distribution of variables. Association measures such as Kendall's tau or Spearman's rho can be expressed as functionals of the copula. The dependence structure between two variables can be highly influenced by a covariate, and it is of real interest to know how this dependence structure changes with the value taken by the covariate. This motivates the need for introducing conditional copulas, and the associated conditional Kendall's tau and Spearman's rho association measures. After the introduction and motivation of these concepts, two nonparametric estimators for a conditional copula are proposed and discussed. Then nonparametric estimates for the conditional association measures are derived. A key issue is that these measures are now looked at as functions in the covariate. The performances of all estimators are investigated via a simulation study which also includes a data-driven algorithm for choosing the smoothing parameters. The usefulness of the methods is illustrated on two real data examples.
Keywords: Asymptotic; bias; Asymptotic; variance; Conditional; copula; Conditional; Kendall's; tau; Conditional; Spearman's; rho; Empirical; estimation; Global; and; local; bandwidths; Local; dependencies; Smoothing (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00438-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:5:p:1919-1932
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().