Ensemble classification of paired data
Werner Adler,
Alexander Brenning,
Sergej Potapov,
Matthias Schmid and
Berthold Lausen
Computational Statistics & Data Analysis, 2011, vol. 55, issue 5, 1933-1941
Abstract:
In many medical applications, data are taken from paired organs or from repeated measurements of the same organ or subject. Subject based as opposed to observation based evaluation of these data results in increased efficiency of the estimation of the misclassification rate. A subject based approach for classification in the generation of bootstrap samples of bagging and bundling methods is analyzed. A simulation model is used to compare the performance of different strategies to create the bootstrap samples which are used to grow individual trees. The proposed approach is compared to linear discriminant analysis, logistic regression, random forests and gradient boosting. Finally, the simulation results are applied to glaucoma diagnosis using both eyes of glaucoma patients and healthy controls. It is demonstrated that the proposed subject based resampling reduces the misclassification rate.
Keywords: Ensemble; classification; Glaucoma; diagnosis; Paired; data (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00445-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:5:p:1933-1941
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().