EconPapers    
Economics at your fingertips  
 

Dependent mixtures of Dirichlet processes

Spyridon J. Hatjispyros, Theodoros Nicoleris and Stephen G. Walker

Computational Statistics & Data Analysis, 2011, vol. 55, issue 6, 2011-2025

Abstract: An approach to modeling dependent nonparametric random density functions is presented. This is based on the well known mixture of Dirichlet process model. The idea is to use a technique for constructing dependent random variables, first used for dependent gamma random variables. While the methodology works for an arbitrary number of dependent random densities, with each pair having their own dependent structure, the mathematics and estimation algorithm is focused on two dependent random density functions. Simulations and a real data example are presented.

Keywords: Bayesian; nonparametric; inference; Bivariate; distribution; Mixture; of; Dirichlet; process (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00461-5
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:6:p:2011-2025

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:6:p:2011-2025