EconPapers    
Economics at your fingertips  
 

Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach

Tomoko Matsuo, Douglas W. Nychka and Debashis Paul

Computational Statistics & Data Analysis, 2011, vol. 55, issue 6, 2059-2073

Abstract: A multi-resolution basis can provide a useful representation of nonstationary two-dimensional spatial processes that are typically encountered in the geosciences. The main advantages are its flexibility for representing departures from stationarity and importantly the scalability of algorithms to large numbers of spatial locations. The key ingredients of our approach are the availability of fast transforms for wavelet bases on regular grids and enforced sparsity in the covariance matrix among wavelet basis coefficients. In support of this approach we outline a theoretical proposition for decay properties of the multi-resolution covariance for mixtures of Matérn covariances. A covariance estimator, built upon a regularized method of moment, is straightforward to compute for complete data on regular grids. For irregular spatial data the estimator is implemented by using a conditional simulation algorithm drawn from a Monte Carlo Expectation Maximization approach, to translate the problem to a regular grid in order to take advantage of efficient wavelet transforms. This method is illustrated with a Monte Carlo experiment and applied to surface ozone data from an environmental monitoring network. The computational efficiency makes it possible to provide bootstrap measures of uncertainty and these provide objective evidence of the nonstationarity of the surface ozone field.

Keywords: Computational; efficiency; Gaussian; process; Multi-resolution; basis; Regularized; method; of; moment; Sparse; covariance; matrix; Surface; ozone; observation (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00458-5
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:6:p:2059-2073

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:6:p:2059-2073