A flexible extreme value mixture model
A. MacDonald,
C.J. Scarrott,
D. Lee,
B. Darlow,
M. Reale and
G. Russell
Computational Statistics & Data Analysis, 2011, vol. 55, issue 6, 2137-2157
Abstract:
Extreme value theory is used to derive asymptotically motivated models for unusual or rare events, e.g. the upper or lower tails of a distribution. A new flexible extreme value mixture model is proposed combining a non-parametric kernel density estimator for the bulk of the distribution with an appropriate tail model. The complex uncertainties associated with threshold choice are accounted for and new insights into the impact of threshold choice on density and quantile estimates are obtained. Bayesian inference is used to account for all uncertainties and enables inclusion of expert prior information, potentially overcoming the inherent sparsity of extremal data. A simulation study and empirical application for determining normal ranges for physiological measurements for pre-term infants is used to demonstrate the performance of the proposed mixture model. The potential of the proposed model for overcoming the lack of consistency of likelihood based kernel bandwidth estimators when faced with heavy tailed distributions is also demonstrated.
Keywords: Extreme; values; Mixture; model; Kernel; density; Threshold; selection (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(11)00007-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:6:p:2137-2157
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().