Bayesian analysis of Birnbaum-Saunders distribution with partial information
Ancha Xu and
Yincai Tang
Computational Statistics & Data Analysis, 2011, vol. 55, issue 7, 2324-2333
Abstract:
In Bayesian analysis with objective priors, it should be justified that the posterior distribution is proper. In this paper, we show that the reference prior (or independent Jeffreys prior) of a two-parameter Birnbaum-Saunders distribution will result in an improper posterior distribution. However, the posterior distributions are proper based on the reference priors with partial information (RPPI). Based on censored samples, slice sampling is utilized to obtain the Bayesian estimators based on RPPI. Monte Carlo simulations are used to compare the efficiencies of different RPPIs, to assess the sensitivity of the choice of the priors, and to compare the Bayesian estimators with the maximum likelihood estimators, for various scales of sample size and degree of censoring. A real data set is analyzed for illustrative purpose.
Keywords: Birnbaum-Saunders; distribution; Reference; prior; Slice; sampling (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(11)00040-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:7:p:2324-2333
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().