Estimation of empirical null using a mixture of normals and its use in local false discovery rate
DoHwan Park,
Junyong Park,
Xiaosong Zhong and
Michel Sadelain
Computational Statistics & Data Analysis, 2011, vol. 55, issue 7, 2421-2432
Abstract:
When high dimensional microarray data is given, it is of interest to select significant genes by controlling a given level of Type-I error. One popular way to control the level is the false discovery rate (FDR). This paper considers gene selection based on the local false discovery rate. In most of the previous studies, the null distribution of gene expression is commonly assumed to be a normal distribution. However, if the null distribution has heavier tail than that of normal, there may exist too many false discoveries leading to the failure of controlling the given level of FDR. We propose a novel procedure which enriches a class of null distribution based on a mixture of normals. We present simulation studies to show that our proposed procedure is less sensitive to variation of null distribution than local false discovery rate with a single normal for the null. We also provide real example of gene expression profiles of antigen-specific human CD8+ T-lymphocytes treated with cytokine Interleukin-2 (IL-2) and Interleukin-15 (IL-15) for comparison.
Keywords: Local; false; discovery; rate; Normal; mixture; Sparsity; Gene; selection (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(11)00054-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:7:p:2421-2432
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().