Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models
Emanuele Taufer,
Nikolai Leonenko and
Marco Bee
Computational Statistics & Data Analysis, 2011, vol. 55, issue 8, 2525-2539
Abstract:
Continuous-time stochastic volatility models are becoming increasingly popular in finance because of their flexibility in accommodating most stylized facts of financial time series. However, their estimation is difficult because the likelihood function does not have a closed-form expression. A characteristic function-based estimation method for non-Gaussian Ornstein-Uhlenbeck-based stochastic volatility models is proposed. Explicit expressions of the characteristic functions for various cases of interest are derived. The asymptotic properties of the estimators are analyzed and their small-sample performance is evaluated by means of a simulation experiment. Finally, two real-data applications show that the superposition of two Ornstein-Uhlenbeck processes gives a good approximation to the dependence structure of the process.
Keywords: Ornstein-Uhlenbeck; process; Levy; process; Stochastic; volatility; Characteristic; function; estimation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(11)00075-2
Full text for ScienceDirect subscribers only.
Related works:
Working Paper: Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:8:p:2525-2539
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().