Generalized method of moments estimation for cointegrated vector autoregressive models
Suk K. Park,
Sung K. Ahn and
Sinsup Cho
Computational Statistics & Data Analysis, 2011, vol. 55, issue 9, 2605-2618
Abstract:
In this study, a generalized method of moments (GMM) for the estimation of nonstationary vector autoregressive models with cointegration is considered. Two iterative methods are considered: a simultaneous estimation method and a switching estimation method. The asymptotic properties of the GMM estimators of these methods are found to be the same as those of the Gaussian reduced-rank estimator. Through Monte Carlo simulation, the small-sample properties of the GMM estimators are studied and compared with those of the Gaussian reduced-rank estimator and the maximum likelihood estimator considered by other researchers. In the case of small samples, the GMM estimators are more robust to deviations from normality assumptions, particularly to outliers.
Keywords: Cointegration; GMM; estimation; VAR; model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311001010
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:9:p:2605-2618
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().