Robust estimators and tests for bivariate copulas based on likelihood depth
Liesa Denecke and
Christine H. Müller
Computational Statistics & Data Analysis, 2011, vol. 55, issue 9, 2724-2738
Abstract:
Estimators and tests based on likelihood depth for one-parametric copulas are given. For the Gaussian and Gumbel copulas, it is shown that the maximum depth estimators are biased. They can be corrected and the new estimators are robust against contamination. For testing, simplicial likelihood depth is considered. Because of the bias of the maximum depth estimator, simplicial likelihood depth is not a degenerated U-statistic so that easily asymptotic [alpha]-level tests can be derived for arbitrary hypotheses. Tests are in particular investigated for the one-sided alternatives. Simulation studies for the Gaussian and Gumbel copulas show that the power of the first test is rather good, but the latter one has to be improved, which is also done here. The new tests are robust against contamination.
Keywords: Copula; Gaussian; copula; Gumbel; copula; Data; depth; Likelihood; depth; Simplicial; depth; Parametric; estimation; Test; Robustness; against; contamination (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311001320
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:9:p:2724-2738
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().