Bias from misspecification of the component variances in a normal mixture
Yungtai Lo
Computational Statistics & Data Analysis, 2011, vol. 55, issue 9, 2739-2747
Abstract:
Bias in parameter estimates can be substantial when heteroscedastic normal mixtures are misspecified as homoscedastic normal mixtures, and vice versa. We show through simulations that the maximum likelihood estimators under the false assumption of equal variances are inconsistent and bias in parameter estimates is appreciable and even substantial when the mixture components are not well-separated. Finite sample bias in parameter estimates is close to the asymptotic bias even for a sample size of 200 or less. When homoscedastic normal mixtures are misspecified as heteroscedastic normal mixtures, the maximum likelihood estimators are consistent. However, the maximum likelihood estimators under a correctly specified homoscedastic mixture model converge to the true parameter values faster than those under a misspecified heteroscedastic mixture model. The bias of the maximum likelihood estimators is less dependent on the lower bound imposed on the component variances to ensure that the likelihood is bounded under the false assumption of unequal variances when the sample size is 500 or more and the component distributions are well-separated. An example is given to demonstrate the effects of a misspecification of the component variances on estimates of the prevalence of hypertension using normal mixtures.
Keywords: Asymptotic; bias; Bootstrap; EM; algorithm; Normal; mixture; Systolic; blood; pressure (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311001368
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:9:p:2739-2747
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().