Small area estimation using skew normal models
V.R.S. Ferraz and
F.A.S. Moura
Computational Statistics & Data Analysis, 2012, vol. 56, issue 10, 2864-2874
Abstract:
Two connected extensions of the Fay–Herriot small area level model that are of practical and theoretical interest are proposed. The first extension allows for the sampling error to be non-symmetrically distributed. This is important for cases in which the sample sizes in the areas are not large enough to rely on the central limit theorem (CLT). This is dealt with by assuming that the sample error is skew normally distributed. The second extension proposes to jointly model the direct survey estimator and its respective variance estimator, borrowing strength from all areas. In this way, all sources of uncertainties are taken into account. The proposed model has been applied to a real data set and compared with the usual Fay–Herriot model under the assumption of unknown sampling variances. A simulation study was carried out to evaluate the frequentist properties of the proposed model. The evaluation studies show that the proposed model is more efficient for small area predictions under skewed data than the customarily employed normal area model.
Keywords: Bayesian inference; MCMC; Hierarchical models (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002593
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:10:p:2864-2874
DOI: 10.1016/j.csda.2011.07.005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().