Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators
Stefano Marchetti,
Nikos Tzavidis and
Monica Pratesi
Computational Statistics & Data Analysis, 2012, vol. 56, issue 10, 2889-2902
Abstract:
Small area estimation is conventionally concerned with the estimation of small area averages and totals. More recently emphasis has been also placed on the estimation of poverty indicators and of key quantiles of the small area distribution function using robust models, for example, the M-quantile small area model. In parallel to point estimation, Mean Squared Error (MSE) estimation is an equally crucial and challenging task. However, while analytic MSE estimation for small area averages is possible, analytic MSE estimation for quantiles and poverty indicators is difficult. Moreover, one of the main criticisms of the analytic MSE estimator for M-quantile estimates of small area averages is that it can be unstable when the area-specific sample sizes are small. A non-parametric bootstrap framework for MSE estimation for small area averages, quantiles and poverty indicators estimated with the M-quantile small area model is proposed. Emphasis is placed on second order properties of MSE estimators with results suggesting that the bootstrap MSE estimator is more stable than corresponding analytic MSE estimators. The proposed bootstrap is evaluated in a series of simulation studies under different parametric assumptions for the model error terms and different scenarios for the area-specific sample and population sizes. Finally, results from the application of the proposed MSE estimator to real income data from the European Survey of Income and Living Conditions (EU-SILC) in Italy are presented and information on the availability of R functions that can be used for implementing the proposed estimation procedures in practice is provided.
Keywords: Chambers–Dunstan estimator; Income distribution; Domain estimation; Poverty mapping; Resampling methods; Robust estimation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312000631
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:10:p:2889-2902
DOI: 10.1016/j.csda.2012.01.023
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().