EconPapers    
Economics at your fingertips  
 

A new class of semi-mixed effects models and its application in small area estimation

María José Lombardía and Stefan Sperlich ()

Computational Statistics & Data Analysis, 2012, vol. 56, issue 10, 2903-2917

Abstract: In multi-level regression, using a fixed effect for each cluster leads to models that are flexible but that have poor estimation accuracy. In small area studies, for example, fixed effects models are typically over-parameterized. Regarding region as a random effect reduces the number of parameters, and hence, the flexibility, but requires crucial assumptions, such as that of independence between covariates and the random effects. A new class of semi-mixed effects models introduced here includes random and fixed effects models as extreme cases. This class of models constitutes a continuum of models, indexed by a “slider”, that determines the position of the model between these two extremes. Thus, the model selected can be close to the parsimonious random effects case, but far enough away from it to filter out unwanted dependences. The methodology is used for a small area analysis of tourist expenditures in Galicia.

Keywords: Semi-mixed effects models; Semiparametric regression; Multilevel models; Small area statistics; Panel data analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312000357
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:10:p:2903-2917

DOI: 10.1016/j.csda.2012.01.015

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2903-2917