EconPapers    
Economics at your fingertips  
 

An application of shrinkage estimation to the nonlinear regression model

S. Ejaz Ahmed and Christopher J. Nicol

Computational Statistics & Data Analysis, 2012, vol. 56, issue 11, 3309-3321

Abstract: Various large sample estimation techniques in a nonlinear regression model are presented. These estimators are based around preliminary tests of significance, and the James–Stein rule. The properties of these estimators are studied when estimating regression coefficients in the multiple nonlinear regression model when it is a priori suspected that the coefficients may be restricted to a subspace. A simulation based on a demand for money model shows the superiority of the positive-part shrinkage estimator, in terms of standard measures of asymptotic distributional quadratic bias and risk measures, over a range of economically meaningful parameter values. Further work remains in analysing the use of these estimators in economic applications, relative to the inferential approach which is best to use in these circumstances.

Keywords: Nonlinear regression; Restricted estimation; Shrinkage and pre-test estimators; Quadratic bias and risk; Simulation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310003099
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:11:p:3309-3321

DOI: 10.1016/j.csda.2010.07.022

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:11:p:3309-3321