Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models
Jan Kiviet and
Garry Phillips
Computational Statistics & Data Analysis, 2012, vol. 56, issue 11, 3705-3729
Abstract:
An approximation to order T−2 is obtained for the bias of the full vector of least-squares estimates obtained from a sample of size T in general stable but not necessarily stationary ARX(1) models with normal disturbances. This yields generalizations, allowing for various forms of initial conditions, of Kendall’s and White’s classic results for stationary AR(1) models. The accuracy of various alternative approximations is examined and compared by simulation for particular parameterizations of AR(1) and ARX(1) models. The results show that often the second-order approximation is considerably better than its first-order counterpart and hence opens up perspectives for improved bias correction. However, order T−2 approximations are also found to be more vulnerable in the near unit root case than the much simpler order T−1 approximations.
Keywords: ARX-model; Asymptotic expansion; Bias approximation; Lagged dependent variable; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310002860
Full text for ScienceDirect subscribers only.
Related works:
Working Paper: Higher-Order Asymptotic Expansions of the Least-Squares Estimation Bias in First-Order Dynamic Regression Models (1999)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:11:p:3705-3729
DOI: 10.1016/j.csda.2010.07.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().