Likelihood-free Bayesian inference for α-stable models
G.W. Peters,
S.A. Sisson and
Y. Fan
Computational Statistics & Data Analysis, 2012, vol. 56, issue 11, 3743-3756
Abstract:
α-stable distributions are utilized as models for heavy-tailed noise in many areas of statistics, finance and signal processing engineering. However, in general, neither univariate nor multivariate α-stable models admit closed form densities which can be evaluated pointwise. This complicates the inferential procedure. As a result, α-stable models are practically limited to the univariate setting under the Bayesian paradigm, and to bivariate models under the classical framework. A novel Bayesian approach to modelling univariate and multivariate α-stable distributions is introduced, based on recent advances in “likelihood-free” inference. The performance of this procedure is evaluated in 1, 2 and 3 dimensions, and through an analysis of real daily currency exchange rate data. The proposed approach provides a feasible inferential methodology at a moderate computational cost.
Keywords: α-stable distributions; Approximate Bayesian computation; Bayesian inference; Likelihood-free inference; Multivariate models (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310003786
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:11:p:3743-3756
DOI: 10.1016/j.csda.2010.10.004
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().