EM vs MM: A case study
Hua Zhou and
Yiwen Zhang
Computational Statistics & Data Analysis, 2012, vol. 56, issue 12, 3909-3920
Abstract:
The celebrated expectation–maximization (EM) algorithm is one of the most widely used optimization methods in statistics. In recent years it has been realized that EM algorithm is a special case of the more general minorization–maximization (MM) principle. Both algorithms create a surrogate function in the first (E or M) step that is maximized in the second M step. This two step process always drives the objective function uphill and is iterated until the parameters converge. The two algorithms differ in the way the surrogate function is constructed. The expectation step of the EM algorithm relies on calculating conditional expectations, while the minorization step of the MM algorithm builds on crafty use of inequalities. For many problems, EM and MM derivations yield the same algorithm. This expository note walks through the construction of both algorithms for estimating the parameters of the Dirichlet-Multinomial distribution. This particular case is of interest because EM and MM derivations lead to two different algorithms with completely distinct operating characteristics. The EM algorithm converges quickly but involves solving a nontrivial maximization problem in the M step. In contrast the MM updates are extremely simple but converge slowly. An EM–MM hybrid algorithm is derived which shows faster convergence than the MM algorithm in certain parameter regimes. The local convergence rates of the three algorithms are studied theoretically from the unifying MM point of view and also compared on numerical examples.
Keywords: Convergence rate; Dirichlet-multinomial distribution; EM algorithm; MM algorithm (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002174
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:12:p:3909-3920
DOI: 10.1016/j.csda.2012.05.018
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().