Bayesian smoothing spline analysis of variance
Chin-I. Cheng and
Paul L. Speckman
Computational Statistics & Data Analysis, 2012, vol. 56, issue 12, 3945-3958
Abstract:
Smoothing spline ANOVA (SSANOVA) provides an approach to semiparametric function estimation based on an ANOVA type of decomposition. Wahba et al. (1995) decomposed the regression function based on a tensor sum decomposition of inner product spaces into orthogonal subspaces, so the effects of the estimated functions from each subspace can be viewed independently. Recent research related to smoothing spline ANOVA focuses on either frequentist approaches or a Bayesian framework for variable selection and prediction. In our approach, we seek “objective” priors especially suited to estimation. The prior for linear terms including level effects is a variant of the Zellner–Siow prior (Zellner and Siow, 1980), and the prior for a smooth effect is specified in terms of effective degrees of freedom. We study this fully Bayesian SSANOVA model for Gaussian response variables, and the method is illustrated with a real data set.
Keywords: Smoothing spline ANOVA; Reproducing kernel; Bayesian; Zellner–Siow prior (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002198
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:12:p:3945-3958
DOI: 10.1016/j.csda.2012.05.020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().