Information ratio test for model misspecification on parametric structures in stochastic diffusion models
Shulin Zhang,
Peter X.-K. Song,
Daimin Shi and
Qian M. Zhou
Computational Statistics & Data Analysis, 2012, vol. 56, issue 12, 3975-3987
Abstract:
We develop a hypothesis testing approach to checking model misspecification on parametric structures in continuous-time stochastic diffusion models. The key idea behind the development of our test statistic is rooted in a ratio of two types of information matrices, the negative sensitivity matrix and the variability matrix, in the context of martingale estimating equations. We propose a bootstrap resampling method to implement numerically the proposed diagnostic procedure. Through intensive simulation studies, we compare the proposed approach with several currently popular methods and show that our approach is advantageous in the aspects of type I error control, power improvement as well as computational efficiency. Two real-world data examples are included to illustrate the practical use of our proposed testing procedure.
Keywords: Bartlett identity; Drift; Godambe information; Information unbiasedness; Martingale estimating functions; Volatility (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002125
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:12:p:3975-3987
DOI: 10.1016/j.csda.2012.05.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().