A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking
Lluís Bermúdez and
Dimitris Karlis
Computational Statistics & Data Analysis, 2012, vol. 56, issue 12, 3988-3999
Abstract:
Bivariate Poisson regression models for ratemaking in car insurance have been previously used. They included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. These models are now revisited in order to consider alternatives. A 2-finite mixture of bivariate Poisson regression models is used to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, it is shown that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to an automobile insurance claims data set and it is shown that the modeling of the data set can be improved considerably.
Keywords: Zero-inflation; Overdispersion; EM algorithm; Automobile insurance; A priori ratemaking (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002150
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:12:p:3988-3999
DOI: 10.1016/j.csda.2012.05.016
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().