BOPA: A Bayesian hierarchical model for outlier expression detection
Zhaoping Hong and
Heng Lian
Computational Statistics & Data Analysis, 2012, vol. 56, issue 12, 4146-4156
Abstract:
In many cancer studies, a gene may be expressed in some but not all of the disease samples, reflecting the complexity of the underlying disease. The traditional t-test assumes a mean shift for the tumor samples compared to normal samples and is thus not structured to capture partial differential expressions. More powerful tests specially designed for this situation can find genes with heterogeneous expressions associated with possible subtypes of the cancer. This article proposes a Bayesian model for cancer outlier profile analysis (BOPA). We build on the Gamma–Gamma model introduced in Newton et al. (2001), Kendziorski et al. (2003), and Newton et al. (2004), by using a five-component mixture model to represent various differential expression patterns. The hierarchical mixture model explicitly accounts for outlier expressions, and inferences are based on samples from posterior distributions generated from the Markov chain Monte Carlo algorithm we have developed. We present simulation and real-life dataset analyses to demonstrate the proposed methodology.
Keywords: Cancer outlier profile analysis; False discovery rate; Markov chain Monte Carlo; Microarrays (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312001855
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:12:p:4146-4156
DOI: 10.1016/j.csda.2012.05.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().