Parameter estimation in the spatial auto-logistic model with working independent subblocks
Johan Lim,
Kiseop Lee,
Donghyeon Yu,
Haiyan Liu and
Michael Sherman
Computational Statistics & Data Analysis, 2012, vol. 56, issue 12, 4421-4432
Abstract:
We propose an approximation to the likelihood function with independent sub-blocks in the spatial auto-logistic model. The entire data is subdivided into many sub-blocks which are treated as independent from each other. The approximate maximum likelihood estimator, called maximum block independent likelihood estimator, is shown to have the same asymptotic distribution as that of the maximum likelihood estimator in the Ising model, a special case of the spatial auto-logistic model. The computational load for the proposed estimator is much lighter than that for the maximum likelihood estimator, and decreases geometrically as the size of a sub-block decreases. Also, limited simulation studies show that, in finite samples, the maximum block independent likelihood estimator performs as well as the maximum likelihood estimator in mean squared error. We apply our procedure to an estimation and a test of spatial dependence in the longleaf pine tree data in Cressie (1993) and the aerial image data in Pyun et al. (2007). Finally, we discuss the extension of the proposed estimator to other spatial auto-regressive models.
Keywords: Composite likelihood; Independent sub-block; Likelihood approximation; Pseudo likelihood; Spatial auto-logistic model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312001399
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:12:p:4421-4432
DOI: 10.1016/j.csda.2012.03.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().