On generalised asymmetric stochastic volatility models
Georgios Tsiotas
Computational Statistics & Data Analysis, 2012, vol. 56, issue 1, 151-172
Abstract:
Stochastic volatility (SV) models have been considered as a real alternative to time-varying volatility of the ARCH family. Existing asymmetric SV (ASV) models treat volatility asymmetry via the leverage effect hypothesis. Generalised ASV models that take account of both volatility asymmetry and normality violation expressed simultaneously by skewness and excess kurtosis are introduced. The new generalised ASV models are estimated using the Bayesian Markov Chain Monte Carlo approach for parametric and log-volatility estimation. By using simulated and real financial data series, the new models are compared to existing SV models for their statistical properties, and for their estimation performance in within and out-of-sample periods. Results show that there is much to gain from the introduction of the generalised ASV models.
Keywords: Stochastic; volatility; Leverage; effect; Noncentral-t; distribution; Skew-normal; distribution; Skew-t; distribution; Metropolis-Hastings; MCMC; DIC; Model; selection; Forecasting; evaluation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002489
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:1:p:151-172
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().