EconPapers    
Economics at your fingertips  
 

Robust joint modeling of mean and dispersion through trimming

N.M. Neykov, Peter Filzmoser and P.N. Neytchev

Computational Statistics & Data Analysis, 2012, vol. 56, issue 1, 34-48

Abstract: The Maximum Likelihood Estimator (MLE) and Extended Quasi-Likelihood (EQL) estimator have commonly been used to estimate the unknown parameters within the joint modeling of mean and dispersion framework. However, these estimators can be very sensitive to outliers in the data. In order to overcome this disadvantage, the usage of the maximum Trimmed Likelihood Estimator (TLE) and the maximum Extended Trimmed Quasi-Likelihood (ETQL) estimator is recommended to estimate the unknown parameters in a robust way. The superiority of these approaches in comparison with the MLE and EQL estimator is illustrated by an example and a simulation study. As a prominent measure of robustness, the finite sample Breakdown Point (BDP) of these estimators is characterized in this setting.

Keywords: Extended; quasi-likelihood; Extended; trimmed; quasi-likelihood; Generalized; linear; models; Joint; modeling; of; mean; and; dispersion; Breakdown; point; Outlier; detection (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002611
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:1:p:34-48

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:34-48