EconPapers    
Economics at your fingertips  
 

Random effects in promotion time cure rate models

Celia Mendes Carvalho Lopes and Heleno Bolfarine

Computational Statistics & Data Analysis, 2012, vol. 56, issue 1, 75-87

Abstract: In this paper, a survival model with long-term survivors and random effects, based on the promotion time cure rate model formulation for models with a surviving fraction is investigated. We present Bayesian and classical estimation approaches. The Bayesian approach is implemented using a Markov chain Monte Carlo (MCMC) based on the Metropolis-Hastings algorithms. For the second one, we use restricted maximum likelihood (REML) estimators. A simulation study is performed to evaluate the accuracy of the applied techniques for the estimates and their standard deviations. An example on an oropharynx cancer study is used to illustrate the model and the estimation approaches considered in the study.

Keywords: Long-term; survivors; Random; effects; REML; Metropolis-Hastings (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311001745
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:1:p:75-87

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:75-87