A Bayesian information criterion for portfolio selection
Wei Lan,
Hansheng Wang and
Chih-Ling Tsai
Computational Statistics & Data Analysis, 2012, vol. 56, issue 1, 88-99
Abstract:
The mean-variance theory of Markowitz (1952) indicates that large investment portfolios naturally provide better risk diversification than small ones. However, due to parameter estimation errors, one may find ambiguous results in practice. Hence, it is essential to identify relevant stocks to alleviate the impact of estimation error in portfolio selection. To this end, we propose a linkage condition to link the relevant and irrelevant stock returns via their conditional regression relationship. Subsequently, we obtain a BIC selection criterion that enables us to identify relevant stocks consistently. Numerical studies indicate that BIC outperforms commonly used portfolio strategies in the literature.
Keywords: Bayesian; information; criterion; Minimal; variance; portfolio; Portfolio; selection; Risk; diversification; Selection; consistency (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002155
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:1:p:88-99
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().