EconPapers    
Economics at your fingertips  
 

EM algorithm for one-shot device testing under the exponential distribution

N. Balakrishnan and M.H. Ling

Computational Statistics & Data Analysis, 2012, vol. 56, issue 3, 502-509

Abstract: The EM algorithm is a powerful technique for determining the maximum likelihood estimates (MLEs) in the presence of binary data since the maximum likelihood estimators of the parameters cannot be expressed in a closed-form. In this paper, we consider one-shot devices that can be used only once and are destroyed after use, and so the actual observation is on the conditions rather than on the real lifetimes of the devices under test. Here, we develop the EM algorithm for such data under the exponential distribution for the lifetimes. Due to the advances in manufacturing design and technology, products have become highly reliable with long lifetimes. For this reason, accelerated life tests are performed to collect useful information on the parameters of the lifetime distribution. For such a test, the Bayesian approach with normal prior was proposed recently by Fan et al. (2009). Here, through a simulation study, we show that the EM algorithm and the mentioned Bayesian approach are both useful techniques for analyzing such binary data arising from one-shot device testing and then make a comparative study of their performance and show that, while the Bayesian approach is good for highly reliable products, the EM algorithm method is good for moderate and low reliability situations.

Keywords: EM algorithm; Bayesian method; One-shot device testing; Exponential distribution; Accelerated factor; Censoring (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731100329X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:3:p:502-509

DOI: 10.1016/j.csda.2011.09.010

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:3:p:502-509