Nonparametric regression models for right-censored data using Bernstein polynomials
Muhtarjan Osman and
Sujit K. Ghosh
Computational Statistics & Data Analysis, 2012, vol. 56, issue 3, 559-573
Abstract:
In some applications of survival analysis with covariates, the commonly used semiparametric assumptions (e.g., proportional hazards) may turn out to be stringent and unrealistic, particularly when there is scientific background to believe that survival curves under different covariate combinations will cross during the study period. We present a new nonparametric regression model for the conditional hazard rate using a suitable sieve of Bernstein polynomials. The proposed nonparametric methodology has three key features: (i) the smooth estimator of the conditional hazard rate is shown to be a unique solution of a strictly convex optimization problem for a wide range of applications; making it computationally attractive, (ii) the model is shown to encompass a proportional hazards structure, and (iii) large sample properties including consistency and convergence rates are established under a set of mild regularity conditions. Empirical results based on several simulated data scenarios indicate that the proposed model has reasonably robust performance compared to other semiparametric models particularly when such semiparametric modeling assumptions are violated. The proposed method is further illustrated on the gastric cancer data and the Veterans Administration lung cancer data.
Keywords: Bernstein polynomials; Censored data; Nonparametric regression; Nonproportional hazards; Sieve (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003185
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:3:p:559-573
DOI: 10.1016/j.csda.2011.08.019
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().