Generalized degrees of freedom and adaptive model selection in linear mixed-effects models
Bo Zhang,
Xiaotong Shen and
Sunni L. Mumford
Computational Statistics & Data Analysis, 2012, vol. 56, issue 3, 574-586
Abstract:
Linear mixed-effects models involve fixed effects, random effects and covariance structures, which require model selection to simplify a model and to enhance its interpretability and predictability. In this article, we develop, in the context of linear mixed-effects models, the generalized degrees of freedom and an adaptive model selection procedure defined by a data-driven model complexity penalty. Numerically, the procedure performs well against its competitors not only in selecting fixed effects but in selecting random effects and covariance structure as well. Theoretically, asymptotic optimality of the proposed methodology is established over a class of information criteria. The proposed methodology is applied to the BioCycle Study, to determine predictors of hormone levels among premenopausal women and to assess variation in hormone levels both between and within women across the menstrual cycle.
Keywords: Adaptive penalty; Linear mixed-effects models; Loss estimation; Generalized degrees of freedom (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003197
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:3:p:574-586
DOI: 10.1016/j.csda.2011.09.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().