EconPapers    
Economics at your fingertips  
 

Functional linear regression after spline transformation

Guochang Wang, Nan Lin and Baoxue Zhang

Computational Statistics & Data Analysis, 2012, vol. 56, issue 3, 587-601

Abstract: Functional linear regression has been widely used to model the relationship between a scalar response and functional predictors. If the original data do not satisfy the linear assumption, an intuitive solution is to perform some transformation such that transformed data will be linearly related. The problem of finding such transformations has been rather neglected in the development of functional data analysis tools. In this paper, we consider transformation on the response variable in functional linear regression and propose a nonparametric transformation model in which we use spline functions to construct the transformation function. The functional regression coefficients are then estimated by an innovative procedure called mixed data canonical correlation analysis (MDCCA). MDCCA is analogous to the canonical correlation analysis between two multivariate samples, but is between a multivariate sample and a set of functional data. Here, we apply the MDCCA to the projection of the transformation function on the B-spline space and the functional predictors. We then show that our estimates agree with the regularized functional least squares estimate for the transformation model subject to a scale multiplication. The dimension of the space of spline transformations can be determined by a model selection principle. Typically, a very small number of B-spline knots is needed. Real and simulation data examples are further presented to demonstrate the value of this approach.

Keywords: Functional linear regression; Transformation; B-spline; Model selection; Mixed-data canonical correlation analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003240
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:3:p:587-601

DOI: 10.1016/j.csda.2011.09.005

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:3:p:587-601