Standardization of interval symbolic data based on the empirical descriptive statistics
Junpeng Guo,
Wenhua Li,
Chenhua Li and
Sa Gao
Computational Statistics & Data Analysis, 2012, vol. 56, issue 3, 602-610
Abstract:
In many statistical analysis methods, standardization of the sample data is usually recommended to prevent the results from being strongly affected by the scale of measurement of the variables. This paper focuses on the standardization of interval data obtained by symbolic data analysis (SDA). SDA is a new data analysis technique which captures the value of a variable with a symbolic representation. The empirical descriptive statistics of the interval symbolic variable are studied first. We then proposed the standardization method of interval symbolic data and conducted a simulation study to evaluate our standardization method by using clustering analysis. An application example on e-shops of several major cities in China is given at the end of the paper. Differing from previous research, we do not require the assumption of uniformly distributed data in the interval. Our method makes the best use of the original sample information.
Keywords: Standardization; Symbolic data analysis; Interval; Distribution (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003252
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:3:p:602-610
DOI: 10.1016/j.csda.2011.09.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().