Asymptotically efficient estimation of the conditional expected shortfall
Samantha Leorato,
Franco Peracchi and
Andrei V. Tanase
Computational Statistics & Data Analysis, 2012, vol. 56, issue 4, 768-784
Abstract:
A procedure for efficient estimation of the trimmed mean of a random variable conditional on a set of covariates is proposed. For concreteness, the focus is on a financial application where the trimmed mean of interest corresponds to the conditional expected shortfall, which is known to be a coherent risk measure. The proposed class of estimators is based on representing the estimator as an integral of the conditional quantile function. Relative to the simple analog estimator that weights all conditional quantiles equally, asymptotic efficiency gains may be attained by giving different weights to the different conditional quantiles while penalizing excessive departures from uniform weighting. The approach presented here allows for either parametric or nonparametric modeling of the conditional quantiles and the weights, but is essentially nonparametric in spirit. The asymptotic properties of the proposed class of estimators are established. Their finite sample properties are illustrated through a set of Monte Carlo experiments and an empirical application11The Stata and Matlab codes used in the simulations and in the empirical analysis are available as annexes to the electronic version of the paper..
Keywords: Expected shortfall; Quantile regression; Asymptotic efficiency (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731100079X
Full text for ScienceDirect subscribers only.
Related works:
Working Paper: Asymptotically Efficient Estimation of the Conditional Expected Shortfall (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:4:p:768-784
DOI: 10.1016/j.csda.2011.02.020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().