EconPapers    
Economics at your fingertips  
 

Quantile regression with doubly censored data

Guixian Lin, Xuming He and Stephen Portnoy

Computational Statistics & Data Analysis, 2012, vol. 56, issue 4, 797-812

Abstract: Quantile regression offers a semiparametric approach to modeling data with possible heterogeneity. It is particularly attractive for censored responses, where the conditional mean functions are unidentifiable without parametric assumptions on the distributions. A new algorithm is proposed to estimate the regression quantile process when the response variable is subject to double censoring. The algorithm distributes the probability mass of each censored point to its left or right appropriately, and iterates towards self-consistent solutions. Numerical results on simulated data and an unemployment duration study are given to demonstrate the merits of the proposed method.

Keywords: Accelerated failure time model; Kaplan–Meier; Survival analysis; Self-consistent; Semiparametric; Random censoring (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311001009
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:4:p:797-812

DOI: 10.1016/j.csda.2011.03.009

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:797-812