EconPapers    
Economics at your fingertips  
 

Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization

Sungwan Bang and Myoungshic Jhun

Computational Statistics & Data Analysis, 2012, vol. 56, issue 4, 813-826

Abstract: Some regularization methods, including the group lasso and the adaptive group lasso, have been developed for the automatic selection of grouped variables (factors) in conditional mean regression. In many practical situations, such a problem arises naturally when a set of dummy variables is used to represent a categorical factor and/or when a set of basis functions of a continuous variable is included in the predictor set. Complementary to these earlier works, the simultaneous and automatic factor selection is examined in quantile regression. To incorporate the factor information into regularized model fitting, the adaptive sup-norm regularized quantile regression is proposed, which penalizes the empirical check loss function by the sum of factor-wise adaptive sup-norm penalties. It is shown that the proposed method possesses the oracle property. A simulation study demonstrates that the proposed method is a more appropriate tool for factor selection than the adaptive lasso regularized quantile regression.

Keywords: Factor selection; Linear programming; Quantile regression; Regularization; Sup-norm (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311000454
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:4:p:813-826

DOI: 10.1016/j.csda.2011.01.026

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:813-826