Fuzzy and possibilistic clustering for fuzzy data
Renato Coppi,
D’Urso, Pierpaolo and
Paolo Giordani
Authors registered in the RePEc Author Service: Pierpaolo D'Urso
Computational Statistics & Data Analysis, 2012, vol. 56, issue 4, 915-927
Abstract:
The Fuzzy k-Means clustering model (FkM) is a powerful tool for classifying objects into a set of k homogeneous clusters by means of the membership degrees of an object in a cluster. In FkM, for each object, the sum of the membership degrees in the clusters must be equal to one. Such a constraint may cause meaningless results, especially when noise is present. To avoid this drawback, it is possible to relax the constraint, leading to the so-called Possibilistic k-Means clustering model (PkM). In particular, attention is paid to the case in which the empirical information is affected by imprecision or vagueness. This is handled by means of LR fuzzy numbers. An FkM model for LR fuzzy data is firstly developed and a PkM model for the same type of data is then proposed. The results of a simulation experiment and of two applications to real world fuzzy data confirm the validity of both models, while providing indications as to some advantages connected with the use of the possibilistic approach.
Keywords: Possibilistic models; Cluster analysis; LR fuzzy data; Fuzzy k-means; Possibilistic k-means (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310003567
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:4:p:915-927
DOI: 10.1016/j.csda.2010.09.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().