EconPapers    
Economics at your fingertips  
 

Optimal dose de-escalation trial designs for novel contraceptives in women

Christoph Gerlinger, Harald Siedentop, Oke Gerke, Ilka Schellschmidt and Jan Endrikat

Computational Statistics & Data Analysis, 2012, vol. 56, issue 5, 1061-1068

Abstract: Dose finding for classical hormonal contraceptives for women is usually done by investigating the surrogate endpoint inhibition of ovulation. For novel compounds such an approach is not feasible because they do not necessarily inhibit ovulation and no other surrogate endpoint for pregnancy is available. The only way to assess the efficacy of such a product is the direct measurement of the contraceptive efficacy. However, a classical parallel group dose response trial investing several doses including at least one ineffective dose is not possible due to ethical considerations. Therefore, an alternative trial design to determine the lowest effective dose of a new compound that minimizes the number of unwanted pregnancies occurring during the trial is needed. Seven dose escalation designs used to find the maximal tolerated dose in cancer trials were investigated for our problem of determining the minimal effective dose (LED) in preventing pregnancies over 1 year. The statistical properties of these designs were elucidated by a simulation study. The most suitable dose de-escalation designs to determine the LED of a new contraceptive that minimizes the number of unwanted pregnancies occurring during the trial were the continual reassessment method and a design derived from the classical “ 3+3” design in cancer, but with a cohort size of 100 instead of 3. Both dose-finding designs substantially reduced the expected number of pregnancies to less than 4 pregnancies compared to 16.9 in the classical dose-finding design. However, this clear advantage comes at the price of a 5-fold increase in trial duration.

Keywords: Group-sequential design; Dose de-escalation; Dose finding; Contraception; Pearl Index; Continual reassessment method; 3+3 design (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002908
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:5:p:1061-1068

DOI: 10.1016/j.csda.2011.08.005

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1061-1068