Sample size estimation in cluster randomized trials: An evidence-based perspective
Michael Rotondi and
Allan Donner
Computational Statistics & Data Analysis, 2012, vol. 56, issue 5, 1174-1187
Abstract:
The evidence-based perspective to sample size estimation determines appropriate trial size by examining its potential impact on the literature. This approach is extended to determine the appropriate size of a planned cluster randomized trial by considering the role of the planned trial on a future meta-analysis (including current literature and the proposed study). A simulation-based algorithm allows consideration of variable cluster sizes and intracluster correlation coefficient values in conjunction with three approaches to sample size estimation, namely the power-based, variance reduction and non-inferiority perspectives. Two examples employing the sample size estimation techniques described are discussed in detail, while appropriate code is provided in the accompanying R package CRTSize.
Keywords: Sample size estimation; Cluster randomized trials; Intracluster correlation coefficient; Meta-analysis; Design of experiments; Sequential methods (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310004780
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:5:p:1174-1187
DOI: 10.1016/j.csda.2010.12.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().