EconPapers    
Economics at your fingertips  
 

On the identification of predictive biomarkers: Detecting treatment-by-gene interaction in high-dimensional data

W. Werft, A. Benner and A. Kopp-Schneider

Computational Statistics & Data Analysis, 2012, vol. 56, issue 5, 1275-1286

Abstract: For personalised medicine the identification of predictive biomarkers is of great interest. These could guide the choice of therapy and could therefore optimise the benefits of patients of such treatments. The technology of gene expression microarrays allows one to scan thousands of potentially predictive biomarkers simultaneously. In clinical trials it has nowadays become common to use microarrays to collect gene expression data of the patients before treatment. The identification of predictive biomarkers can be statistically addressed by inference of gene-wise generalised linear models (GLM) including an interaction term gene expression times treatment. Inference for such GLMs is then often based on likelihood-ratio (LR) or Wald test statistics to test the influence of interaction of gene expression and treatment on the clinical treatment response. For multiple testing scenarios coming along with these gene-wise GLMs the control of the false discovery rate (FDR) would be appropriate; some false positives can be tolerated within a list of potential candidate genes which deserve further investigation. In a simulation study the utility of various FDR controlling multiple testing procedures for the identification of predictive genes is examined. Since the usual experiment on microarray data deals with small numbers of observations due to financial or probe limitations special interest lies on the behaviour of small sample sizes. Results reveal that a permutation of regressor residuals (PRR) test is superior to standard LR and Wald tests in terms of FDR control.

Keywords: Predictive biomarkers; Treatment-by-gene interaction; Permutation of regressor residuals test (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947310004470
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:5:p:1275-1286

DOI: 10.1016/j.csda.2010.11.019

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1275-1286