EconPapers    
Economics at your fingertips  
 

Approximate Bayesian inference for large spatial datasets using predictive process models

Jo Eidsvik, Andrew O. Finley, Sudipto Banerjee and Håvard Rue

Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1362-1380

Abstract: The challenges of estimating hierarchical spatial models to large datasets are addressed. With the increasing availability of geocoded scientific data, hierarchical models involving spatial processes have become a popular method for carrying out spatial inference. Such models are customarily estimated using Markov chain Monte Carlo algorithms that, while immensely flexible, can become prohibitively expensive. In particular, fitting hierarchical spatial models often involves expensive decompositions of dense matrices whose computational complexity increases in cubic order with the number of spatial locations. Such matrix computations are required in each iteration of the Markov chain Monte Carlo algorithm, rendering them infeasible for large spatial datasets. The computational challenges in analyzing large spatial datasets are considered by merging two recent developments. First, the predictive process model is used as a reduced-rank spatial process, to diminish the dimensionality of the model. Then a computational framework is developed for estimating predictive process models using the integrated nested Laplace approximation. The settings where the first stage likelihood is Gaussian or non-Gaussian are discussed. Issues such as predictions and model comparisons are also discussed. Results are presented for synthetic data and several environmental datasets.

Keywords: Approximate Bayesian inference; Computational statistics; Gaussian processes; Geostatistics; Laplace approximation; Predictive process model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003938
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1362-1380

DOI: 10.1016/j.csda.2011.10.022

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1362-1380