EconPapers    
Economics at your fingertips  
 

Stationary bootstrap for kernel density estimators under ψ-weak dependence

Eunju Hwang and Dong Wan Shin

Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1581-1593

Abstract: Stationary bootstrap technique is applied for kernel-type estimators of densities and their derivatives of stationary ψ-weakly dependent processes. The ψ-weak dependence, introduced by Doukhan & Louhichi [Doukhan, P., Louhichi, S., 1999. A new weak dependence condition and applications to moment inequalities. Stochastic Processes and their Applications 84, 313–342], unifies weak dependence conditions such as mixing, association, Gaussian sequences and Bernoulli shifts. The class of ψ-weakly dependent processes includes all weakly dependent processes of interest in statistics, containing such important processes as GARCH processes, threshold autoregressive processes, and bilinear processes. We obtain asymptotic validity for the stationary bootstrap in the density and derivatives estimation. A Monte-Carlo experiment compares the proposed method with other methods. Log returns of daily Dow Jones index are analyzed by the proposed method.

Keywords: Stationary bootstrap; Weak dependence; Kernel estimator; Density; Derivative (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003586
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1581-1593

DOI: 10.1016/j.csda.2011.10.001

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1581-1593