A method for increasing the robustness of multiple imputation
Rhian M. Daniel and
Michael G. Kenward
Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1624-1643
Abstract:
Missing data are common wherever statistical methods are applied in practice. They present a problem in that they require that additional assumptions be made about the mechanism leading to the incompleteness of the data. By incorporating two models for the missing data process, doubly robust (DR) weighting-based methods offer some protection against misspecification bias since inferences are valid when at least one of the two models is correctly specified. The balance between robustness, efficiency and analytical complexity is one which is difficult to strike, resulting in a split between the likelihood and multiple imputation (MI) school on one hand and the weighting and DR school on the other. An extension of MI is proposed that, in certain settings, can be shown to give rise to DR estimators. It is conjectured that this additional robustness holds more generally, as demonstrated using simulation studies. The method is applied to data from the RECORD study, a clinical trial comparing anti-glycaemic combination therapies in type II diabetes patients.
Keywords: Doubly robust estimation; Missing data; Multiple imputation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731100363X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1624-1643
DOI: 10.1016/j.csda.2011.10.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().