Semi-supervised wavelet shrinkage
Kichun Lee and
Brani Vidakovic
Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1681-1691
Abstract:
To estimate a possibly multivariate regression function g under the general regression setup, y=g+ϵ, one can use wavelet thresholding as an alternative to conventional nonparametric regression methods. Wavelet thresholding is a simple operation in the wavelet domain that selects a subset of coefficients corresponding to an estimator of g when back-transformed. We propose an enhancement to wavelet thresholding by selecting a subset in a semi-supervised fashion in which the neighboring structure and classification function appropriate for wavelet domains are utilized. Wavelet coefficients are classified into two types: labeled, which have either strong or weak magnitudes, and unlabeled, which have in-between magnitudes. Both are connected to neighboring coefficients and belong to a low-dimensional manifold within the set of all wavelet coefficients. The decision to include a coefficient in the model depends not only on its magnitude but also on the labeled and the unlabeled coefficients from its neighborhood. We discuss the theoretical properties of the method and demonstrate its performance in simulated examples.
Keywords: K-NN; Manifold-regularization; Semi-supervised learning; Wavelet shrinkage; Denoising (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003677
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1681-1691
DOI: 10.1016/j.csda.2011.10.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().